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~7o independent definitions of relaxation time are widely used todav. In tile first case 
the general expression for lhe temperature dependence of the relaxation time, TRy(T), is 
obtained bv using the Chapman--Enskog iteration method to solve the Boltzmann equation for 
a gas of particles which possess internal degrees of freedom [i]. In the second case the 
relaxation time, TR2(T), is found directly from the relaxation equation by calculating the 
rate of increase of the internal energy of the molecules ~ich originally ~ere not internally 
excited [2]. 

In tile classical description of the rotational relaxation of a gas of homonuclear dia- 
tonic molecules it is necessary to specify some model of the intermolecular interaction ~ich 
can be used for calculating the redistribution of the rotational and translational energies 
upon collision. The main disadvantage of the rough-sphere, loaded-sphere, spherocylinder, 
and ellipsoid models is that the real intermolecular interaction potential is replaced with 
the potential of rigid frames of different shape. As a result, the average number of colli- 
sions calculated by means of these models which is required to nut the system into equilib- 
rium with respect to the rotational degrees of freedom, ZRI(T) =TRI/T, where r is the trans- 
lational relaxation time, is independent of the temperature; this contradicts the experimen- 
tal data [3]. 

Within the framework of the Parker model [4], the interaction potential of the molecules 
is represented as the sum of the exponential attraction bet~een the centers of mass and the 
exponential repulsion between the centers of force, placed on the internuclear axis at a 
distance d* <d from each other, ~ere d is the internuclear distance. Expansion of the short- 
acting part of the potential in a Fourier series led to the generally accepted form of an 
expansion in powers of the cosines of the angles between the interatomic and intermolecular 
axes. ~le retention of only the first two terms of this expansion was justified by the fact 
that the anisotropy parameter s =212(y)/Io(y) is small~ here y =ad*/2, ~ is the inverse 
radius of action of the intermolecular forces, Io and I2 are modified Bessel functions. '~ne 
quantity ZRz(T) =rR2/T, calculated in [4] and obtained more precisely in [5], corresponding 
to the plane collision of the initially unperturbed rotators, increased monotonically with 
the increase in temperature because of the potential well. The effect of the potential ~Tell 
on ZR2(T) in the range of temperatures tens of times as high as its depth is explained in 
[6] by the approximate nature of the estimates of the integrals in 14]. 

The problem of the redistribution of the translational and rotational energy is solved 
in [6] for the Parker model potential, taking account of the initial rotational excitation 
of the molecules colliding in the plane. In [6] the effect of the remote-acting part of the 
potential is manifested only in the additional acceleration of the participating entities in 
the region of interaction, and the calculated dependence on temperature is extremely weak. 

A comparison of two-dimensional and three-dimensional calculations was carried out in 
[7, 8] by numerical integration of the equations of motion with the Parker potential~ It 
was shown that in the three-dimensional case ZR~(T), depending on the potential parameters, 
is 1.5 to 3 times as high as in the plane case, and the ratio of relaxation times is indepen- 
dent of the temperature [7]. Thus, the transition from the ~7o-dimensional to the three- 
dimensional case may be made either by introducing an additional steric factor or by an appro- 
priate choice of the curve-fitting parameter d* of the theory. 

~le potential of the pai~ise exponential repulsion of individual atoms in the mole- 
cules was used in [9] as the intermolecular potential. Unlike the case of the Parker poten- 
tial [4], in the expansion of the potential [911 in a series in powers of the cosines of the 
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angles between the interatomic and intermolecular axes, because of the large anisotropy param- 
eter, it is no longer possible to confine the expansion to the first two terms. The numeri- 
cal calculation carried out in [9] revealed that even though the remote-acting part of the 
potential was disregarded, ZRI(T) increased monotonically with temperature. The discrepancy 
between the results of [4] and [9] is attributed in [9] to the assumptions adopted in [4] in 
solving the system of equations of motion. However, these discrepancies may be caused by 
the differencebetween the interaction potentials. 

The adiabatic character of the energy exchange between the highly excited rotational 
states of the molecules vas taken into account in [5], in which the time of rotational relax- 
ation was determined by solving the diffusion equation for the case of ultrasound passing 
through the gas. The Parker model potential was used in calculating the diffusion coeffi- 
cient. It was found that the time of rotational relaxation depends on the frequency of the 
ultrasound, taking on values about twice as large as rR2(T). 

~le classical expressions for the coefficient of shear viscosity and the thermal conduc- 
tivity of a gas of particles possessing internal degrees of freedom were obtained in [i0] 
by solving the classical variant of the Boltzmann equation using the Chapman--Enskog method. 
The formulas presented in [i0] have the form of values obtained by averaging over the param- 
eters of the colliding pair of molecules for functions of the energy AE' transmitted from 
the translational to the rotational degrees of freedom when collision takes place and of the 
scattering angle X- 

The calculation of AE' and X for the case of collision between rigid rotators may be 
carried out by using the rough-sphere, loaded-sphere, spherocylinder, and ellipsoid models. 
However, a comparison of the shear-viscosity and thermal-conductivity values calculated on 
this basis with the experimental values does not yield particularly good results [i]. 

In [8] AE' and X were obtained by numerical integration of the two-dimensional and three- 
diraensional classical equations of motion with the Parker model potential. The shear-viscos- 
ity coefficients and the thermal conductivities are represented in the form of tenfold inte- 
grals and calculated by the l~nte Carlo method. Because this kind of calculation is very cum- 
bersome, the results shown correspond to only three temperature values: T =300, 600, and 
900~ ~ze calculated results agree satisfactorily with the experimental ones. 

}~son and t~nchick [ii], who considered as the excitation the ratio of AE' to kT, where 
k is the Boltzmann constant, simplified the relations of [i0]. The approximate relations 
given in [ii] include TRz(T) and the self-diffusion coefficient as the parameters; thesecan 
be obtained without solving the dynamic problem of the collision of particles possessing 
internal degrees of freedom. The relations of [ii] are still being used today for calculat- 
ing the transfer coefficients. 

In the present study the calculation of ZRz(T) and ZR2(T) , as well as of the coefficient 
of shear viscosity and the thermal conductivity, is carried out in the temperature range from 
300 to 10,000~ for nitrogen. The short-acting part of the Parker potential is used as the 
potential of interaction of the molecules. The distortion of the selected potential by 
remote-acting forces is taken into account by introducing a temperature-dependent inverse 
radius of action. It is proposed to use instead of ZR=(T) the two-parameter quantity ZR=(T, 
TR) , which depends not only on the temperature but also on a parameter TR characterizing the 
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initial distribution over the rotational levels. The possibility of introducing the two- 
parameter dependence of ZR=(T, TR) is confirmed by means of an exact calculation carried out 
for parahydrogen in the isothermal case. The shear-viscosity and thermal-conductivity values 
calculated by the Chapman--Enskog method are compared with the values obtained by using the 
approximate relations of [ll]. We carry out an analysis of the sensitivity of the calculated 
values to the parameters of the interaction potential. 

i. ~ consider the problem of the redistribution of the translational and rotational 

energy when there is a collision between identical homonuclear molecules in a fixed plane 
which is at the same time the plane of rotation of each molecule. Following Parker [4], we 
represent the interaction potential in the form: 

V : C exp ( - - a r ) ( i  ~- e cos 291 -F e cos 202), ( 1 . I )  

w h e r e  C i s  a c o n s t a n t ,  r i s  t h e  i n t e r m o l e c u l a r  d i s t a n c e ,  and  01 and e2 a r e  t h e  a n g l e s  b e t w e e n  
t h e  i n t e r m o l e c u l a r  a n d  i n t e r a t o m i c  a x e s  o f  t h e  m o l e c u l e s .  

The s y s t e m  o f  c l a s s i c a l  e q u a t i o n s  o f  m o t i o n  w i t h  p o t e n t i a l  ( 1 o l )  g i v e n  i n  [4]  was  s o l v e d  
within the framework of the theory of perturbations with respect to e. In the zeroth approxi- 
mation the rotational state of the molecules does not change as a result of the collision. 
In a narrow range of action of the intermolecular potential, i/a, the centrifugal energy 
mv2b2/2r 2, which varies only slightly with r, in accordance with the effective-wave-number 
approximation [12], is replaced with the constant value mvZb2/2r~, where m is the mass of an 
atom of the molecule, b is a target parameter, v is the velocity of relative motion of the 
participating entities which do not act on each other, ro is a parameter which takes on a 
value in a narrow range I/a around the point of rotation. 

~le approximations adopted enable us, in the first order of the theory of perturbations 
with respect to e, to obtain analytic expressions for the resulting angular velocities of the 
molecules: 

~i : - - 1 6n l i  sin 2~i / (a~d  2 sh2ui) (i = t ,  2), ( 1 . 2 )  

w h e r e  l i ~ ~ r 2 p i / d  - -  qg/ro; ~i  : ~, - -  arcsin q; ~i : 2 ~ l i / ( a g ~ t  - -  q2 + 2D/~kr); q = b / ~ ;  g = ( V - m / k T ) v ;  

Pi and ~i are the initial reduced angular momenta and initial phases counted from the direc- 
tion of the initial velocity of relative motion of the molecules. The additional accelera- 
tion in the region of interaction as a result of the remote-acting forces is taken into 
account in (1.2) according to [12] by replacing mv=/2 with mv2/2 +D, where D =96.6~ is the 
depth of the potential well [13]. 

~le expressions for the energy hE = (2/mv2)AE ', hE =AE~ +AE= and the momentum AM =AM'/ 
mvro, A~{ =~, +AM2 transferred at the time of collision from the translational to the rota- 
tional degrees of freedom take the form 

AEi ---- 128n~e2/~ sin22~pi/(a4g~d ~ sh~xi) 

- -  16 ~r-2~epi l  i sin 2 , j ( u 2 g ~ d  sh •  

A M i  : - -8nelz  sin 2(p/(a2gro sh • (i = t ,2) .  

(1.3) 
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~le forces of attraction lead to a substantial difference in the isotropic part of the 
model potential of (l.l) from the real isotropic potential of interaction of the nitrogen 
molecules, Vo(r), taken from [13], in the range r > 3.1096.10 -7 mm. Approximating the short- 
acting branch of Vo(r) by the exponential function C exp(-~r) at each point of rotation rp, 
we find the value of the parameter a(rp) =--dln Vo(r)/drlr p. In the case when the function 
giving the distribution of the molecules according to energy of relative motion differs only 
slightly from the ~x~ellian function, each rp, and consequently each a(rp), can be referred 
to the maximum of this function, localized around kT. 

~le graphs of a(T) and e(T) corresponding to d* =0.62 are shown in Fig. la and Fig. Ib, 
respectively. 

We equate the parameter ro taking on a value in a narrow range i/a to the integral 
~ ,  calculated in [13] for the exact potential Vo(r). Such a choice of ro ensures that 
the transfer coefficients calculated in [13] are equal to the transfer coefficients of a gas 
of solid spheres of radius ro/2. The graphs of ro(T) and rp(T) are shown in Fig. ic. 

As is know,n, the angle of elastic scattering for a short-acting potential can be satis- 
factorily approximated by the angle of scattering of solid spheres [12]. In view of the fact 
that the calculated values of AE'are much smaller than kT, the calculation of the angle of 
scattering is carried out on the assumption that the transfer of energy from the transla- 
tional to the rotational degrees of freedom takes place instantaneously at the point ro. As 
a result, we have 

X = ~ - - Y ,  y = a r e s i n ~ - ~  ), (1.4) 

where ~ =arcsin q is the angle between the vector v and the vector drawn from the center of 
scattering to the point ro. 

In the T-approximation the process of establishing equilibrium with respect to the rota- 
tional degrees of freedom is described by the relaxation equation establishing the exponen- 
tial approximation to equilibrium with respect to time [2] : 

deRIdt = (e~ - -  em) / vn ,  (1.5) 

where e R is the rotational energy per molecule and e~ is its equilibrium value. In'general, 
(1.5) holds for small deviations from equilibrium (~R -- eR)/eR <<I: TR2(T) is determined from 
(1.5) as the ratio of e~ to the rate of growth of the energy of the initially unexcited rota- 
tors [2]. In the case considered here, this rate can be determined by averaging (1.3), in 
which we must first set pl =p2 =0: 

4 (1.6) 
�9 .. z k t 2 8 ~ / '  

w h e r e  P i s  t h e  gas p r e s s u r e ;  [ = "  2 ~ q= gS ( g,)~ (2nmkT)l/= ~ exp -- -T h=uobdbdg; ~o = 5 (2~mkT)l /=/ i6=r~;  

XO ~ ~1 IPl=O" 0 0 
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Let us estimate the effect of the initial distribution with respect to the rotational 
states, ~ich are disregarded when we calculate ZR=(T) (1.6). We assume that at time t =0 
this distribution corresponds to the Boltzmann distribution with some temperature T R #0. In 
that case the time of rotational relaxation becomes a function not only of T but of T R as 
well: 

ZR. ( r ,  TR) a 5~ (t -- TR/T ) . = :.I----~pxR(T, TR), p~R~(T, TR) = - ~  ~ - ,  

i;K;; ( 2 i " 
I = ~= (2nrnkr) ll= AE exp 2 -g- dgdwldep~dp~dp=, ( 1 . 7 )  

0 0 0 - - ~  

where we must use as AE the expression (1.3), in which Pi should be replaced by ( T~R/T)Pi. 

In the case of unobstructed exchange between the translational and rotational degrees 
of freedom T~TRI(T)<<e, where 0 is the characteristic time of flow, and eI and eR differ 
from each other by a small quantity proportional to the Knudsen number. The general expres- 
sion for ZR,(T) is found by solving the Boltzmann equation, using the Chapman--Enskog [i] ; 

4 
ZRX (T) = ~ P-~R1 (T), 

~o| = +oo [ g ' + , ~ + ' l ]  

3 .~ (2ImkT)1is 2 " 
0 9 0 --~ 

In deriving (1.8) we determined the temperature on the basis of the total molecular 
energy. Formula (1.8) differs by a factor of 5/3 from the corresponding quantity obtained 
in determining the temperature on the basis of the kinetic energy of the molecules [2]. 

~le general expressions for the transfer coefficients corresponding to the case of unob- 
structed exchange between the translational and rotational degrees of freedom are given in 
[8, I0]. In the case under consideration these expressions take on the form 

~1 = T s in  s Z - -  - T -  sm" Z -~ ~ -~  dw, l ~ t  = 5 (2~mkT) 1/2' 

( Y ' )  75 k l ~5 k Y 3 k l 
~. 1 - - , - ~ -  =i---(  ,--7-2-I- 4 ,,S x z  4- 4 ~ z '  

5 I 5 l y 3 t 
X = 2" ~- -~- 4 p%.~ (7";,' ---- 4 pzR~ (7) ' 

3 t " 3  2 .~ 

t 8 f  15 k 
CD--~ = ' 3  o (1 - -  cos X0) dw, ~o = T-~-~]~,  

~= (2nmkr)l/s 2 T dgbdbdqhdq~=dpldp"" ( 1 . 9 )  
0 O 0 --~ 

In (1.9) n and ~o are the coefficients of shear viscosity corresponding to rotationaliy 
inelastic and elastic collisions, % and ~o are the corresponding values of the thermal conduc- 
tivity; p is the density of the gas; Do is the self-diffusion coefficient of the elastically 
colliding molecules. In the expression for Z we can distinguish explicitly the term (3/2)pDo, 
corresponding to the three-dimensional diffusive transfer of rotational energy, cos Xo = --cos Bo~ 

The simplest approximation, generally used in calculating the transfer coefficients, is 

(3 k , t k ) 
= ~--~ fir -r-f '~-/~,~ ~], ( I . i0)  

where ~ =~o [i]. Aiken, using elementary ideas about the mean free path and taking account 
of the correlation between the kinetic energy of a molecule and its velocity, obtained the 
following values for the coefficients: fetr =5/2, fein =i [i]. 

l~son and Monchick [ii], analyzing the relations (1.9), set AE =0 in the first approxi- 
mation. ~3~e resulting expression for the thermal conductivity coincided with (i.I0), in 
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i =5/2 i which, however, ftr , fin =0Do/n, where n =no. The first approximation in the method of 
[ii] takes account of the diffusive transfer, but it disregards the relaxation of the rota" 
tional energy. The relaxation was taken into account partially in the next, second, approxi- 
mation, in which the term for Z contains not only (3/2)0Do but also the first term of the 
sum under the integral sign. As a result, the expressions for the coefficients f~r and f~n 
from (i.i0) have the form 

In the second approximation sin=x was approximated by its value averaged over the unit sphere, 
which was equal to 2/3; thus, n =no. 

2. Figure i shows the graphs of ~(T), e(T), or ro(T) corresponding to d* =0.62, which 
were used for calculating the rotational relaxation times and the transfer coefficients. 
Sixfold integrals were calculated at 200 points of the range of temperatures under investiga- 
tion, using the Monte Carlo method, with 4000 tests at each point. A smooth curve showing 
variation with temperature was drawn through the points by means of piecewise cubic interpo- 
lation splines of defect i with smoothing [14]. The resulting estimated accuracy of the cal- 
culations is 1.5%. At the lower boundary of the temperature range the accuracy of the cal- 
culation is somewhat lower, since the higher orders of the theory of perturbations with 
respect to e make a substantial contribution. 

Curves i and 2 in Fig. 2 show ~ and no, respectively, as given by (1.9), while the dots 
indicate the experimental points of [15]. The discrepancy between n and no reaches values 
as high as several percent in the low-temperature region; for temperature T >I000~ they no 
longer exceed the experimental error. Curves i and 2 in Fig. 3 show % and ko, respectively, 
as given by (1.9). The dashed curves 3 and 4 correspond to Mason and ~nchick's first and 
second approximations, %1 (formula (i.i0) with f~r and fin) and %=, respectively. The dot- 
and-dash curve 5 was calculated in the Aiken approximation %e, while the dots indicate the 
experimental results of [15]. The discrepancy between ~ and ~I, which differs from ~o 
because the diffusive transfer of rotational energy has been taken into consideration, 
amounts to several percent in the low-temperature range. Taking account of the relaxation 
of the rotational energy in ~2 improves the agreement with the exact calculation. In the 
high-temperature range, T >I000~ the amount by which ~ differs from ~i and ~2 does not 
exceed the experimental error; I is greater than %e in the entire range of temperatures 
investigated. 

Numerical calculations showed that the deviation of ~ from ~o and that of % from ~2 and 
~ in the low-temperature region is due solely to the difference between the scattering 
angle for rotationally inelastic collision and the elastic-scattering angle Xo. The parame- 
ters D, ~, and d* of the potential influence the value of this deviation in different degrees. 
The variation of D, which is responsible for the additional acceleration of the participating 
entities in the region of interaction, does not lead to any change in ~, ~, and ~= that 
exceeds the accuracy limits of the calculation. If the parameters u and d* are increased, 
there is a decrease of several percent in ~, l, and ~=. 

The approximation selected in this study for the isotropic part of the potential of 
interaction of the molecules predetermined the nature of the variation of ~o and ~o, and 
hence n and ~, as functions of temperature. Thus, the small discrepancy between the theoret- 
ical temperature-dependent variation of ~ and I and the experimental results (see Figs. 2, 
3) can be eliminated chiefly by a proper choice of the potential. 

The calculation showed that over the entire temperature range investigated, ZR~(T) is 2 
to 2.5 times as large as ZR2(T), irrespective of the potential parameters D, u, and d*. This 
difference is apparently due to the adiabatic nature of the energy exchange between the 
highly excited rotational states of the molecules. The quantity ZR~(T) should be used for 
interpreting the experimental data on the scattering and absorption of ultrasound, where the 
effect of the ultrasound frequency on ZRI(T) is disregarded [5]. The quantity ZR=(T) should 
be used for interpreting the data of experiments in shock tubes. In this comparison we dis- 
regard the effect of the initial distribution according to rotational levels. 

It should be noted that the available experimental data, both on ultrasound and on shock 
waves, differ from one another by 200-300%, whichis approximately equal to the difference 
between ZR~(T) and ZR2(T). The experimental dispersion makes it much more difficult to 
choose the curve-fitting parameter of the theory, d*. The value d* =0.62, in our opinion, 
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most satisfactorily interprets the totality of the experimental data both in shock tubes 
(Fig. 4) and in ultrasound tubes (Fig. 5); d* =0.62 is an intermediate value between the 
generally used values d* =0.557 [4] and d* =0.66 [6]. 

Curves 1 in Figs. 4 and 5 are the results of calculations performed according to for- 
mulas (1.6) and (1.8), respectively. The dots represent the experimental results found by 
the various authors in [5, 8]. The dashed curves 2 are the result of calculations performed 
according to formulas (1.6) and (1.8) for D =0. Thus, taking account of the additional 
acceleration caused by the remote-acting forces slightly decreases ZRI(T ) and ZR2(T) in the 
low-temperature region. The parameters ~ and d* have the greatest effect on Zp~(T)and ZR=(T): 
a decrease in ~ and in d* causes an increase in ZRI(T) and ZR2(T). The dashed curves 3 
correspond to d * =0.557, while curves 4 and 5 correspond to the constant values ~ =3.35.107 
and 5.32.107 mm -~, respectively. It should be noted that for constant ~ both ZRI(T ) and 
ZR2(T) will remain approximately constant everywhere except at low temperatures, where taking 
account of the additional acceleration of the participating entities caused by the remote- 
acting forces reduces them only slightly. Thus, within the framework of the model described 
above, the experimentally observed increase in ZR~(T ) and ZR=(T) with increasing temperature 
is due practically completely to the distortion of the exponential repulsion caused by remote- 
acting forces, which is taken into account by using the temperature-dependent variation of 
the parameter a. 

~le quantity ZR2(T, TR), calculated by (1.7) for T =I000~ decreases from 6.5 for T R = 
0to1.6 for TR =800~ o 

3. For an answer to the question of which of the relaxation times TRz(T) and ~R2(T, TR) 
can be used to give a more accurate description of the manner in which the system approaches 
equilibrium, we must compare the solution of Eq. (1.5) with the exact solution obtained by 
integrating the kinetic equations for the occupancies of the rotational states. 

~le system of kinetic equations for the occupancies nj of the individual rotational 
levels j was solved in our study for parahydrogen at a constant temperature T =400~ In 
the calculation, we used the constants of the rates of rotational transfers calculated in 
[16] within the framework of the effective-potential method, with r~ =8.55-10 -~ mm = from 
[3]. The quantities ~R2(T) and TR2(T , TR) obtained on the basis of (1.5) were compared with 
the exact value rR2(T, TR), determined by the relation 

( - + (o) ( 3 1 ) 

where 8~=~B](]~-1)m~; ea(0)=~B](]~-1)n~(0); n~ and nj(0) are the Boltzmann occupancies of 

the j-th level with temperatures T and TR, respectively; B is the rotational constant. 

The results of the calculation are sho~rn in Fig. 6; ZR2(T, T R) for T =4000K is given by 
curve i, and the result of the exact calculation using (3.1) is given by curve 2. The point 
TR=0 of curve 1 corresponds to ZR2(T). As in the case of the rotational relaxation of nitro- 
gen, investigated above, we find a fairly strong dependence of the relaxation time on TR, and 
the use of a two-parameter quantity markedly improves the approximate calculation obtained 
with (1.5). The results shown indicate that the initial distribution according to rotational 
levels must be taken into account within the framework of the r-approximation. 

~le authors are grateful to G. V. Dubrovskii, E. G. Kolesnichenko, S. A. Losev, A~ I. 
Osipov, and S. Ya. Umanskii for their comments on the work~ 
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DYNA~IICS OF ~ULSIVEMETAL HEATING BY A 

CURRENT AND ELECTRICAL EXPLOSION OF CONDUCTORS 

V. N. Dorovskii, A. M. Iskol'dskii, and 
E. I. Romenskii 

UDC 531~539.5;621.316.5 

~st studies of electrical explosion are of an experimental nature and are oriented 
toward solution of concrete practical problems. In particular, exploding conductors are used 
as circuit breakers in high power inductive energy storage devices, which are important com- 
ponents of many thermonuclear Projects. Electrical explosion is of special interest in 
attempts to realize variants of so-called inertial thermonuclear synthesis, in which the elec- 
trical energy stored in a capacitive storage bank is transferred by a collapsing metal shell 
without intermediate conversion into light or energetic particles. 

Simulation of the processes occurring in impulsive heating of conductors by a current 
is also of interest in connection with certain experimental behavior which appears anomolous. 
Namely, it appears that certain phenomenological characteristics of the medium are dependent 
not only on the thermodynamic variables, but also on the time derivatives of the latter. 
Thus the specific internal energy [i] and the temperature for commencement of fusion (at con- 
stant pressure) [2] become functions of the rate of temperature change; the development of 
anomalies in conductivity [3] and other properties has been discussed. We are concerned here 
with experiments having heating times th greater than the minimum sound time t s =2r/c s (where 
r is tile conductor radius and Cs is the speed of sound) and the characteristic magnetic diffu- 
sion time tm = 4~ar2/c 2 (where ~ is the conductivity and c is the speed of light). It is 
assumed that the first condition (th>>t s) ensures uniformity of the mass density distribution 
over section, while the second (th>>tm) ensures uniformity of current density, Joulean heat 
source power, and temperature. However there exist estimates and experimental data which 
indicate that great care must be used in applying these assumptions in cases where anomalies 
are present. 

~reover, there is an experimental result available which in the present authors' 
opinion indicates that the converse is true. This is that flexing instabilities related to 
axial stresses can develop in a deenergized conductor a long time after the completion of 
the heating stage. For example, in [4] a copper conductor 1 mm in diameter was heated for 
20 ~sec, and marked instability appeared only after 100 Bsec. These facts suggest 

~scow. Translated from Zhurnal Prikladnoi ~khaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 10-25, July-August, 1983. Original article submitted June 21, 1982. 
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